U.S. flag

An official website of the United States government

icon-dot-gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

icon-https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Continuous Resistivity Profiling, Electrical Resistivity Tomography and Hydrologic Data Collected in 2017 from Indian River Lagoon, Florida

Extending 200 kilometers (km) along the Atlantic Coast of Central Florida, Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States. The lagoon is characterized by shallow, brackish waters and a width that varies between 0.5 and 9.0 km; there is significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center used continuous resistivity profiling (CRP, a towed electronic array) measurements, electrical resistivity tomography (ERT), and basic physical water column properties (for example, depth and temperature) to investigate submarine groundwater discharge at two locations, Eau Gallie North and Riverwalk Park, along the western shore of IRL. Eau Gallie North is near the central section of IRL and Riverwalk Park is approximately 20 km north of the Eau Gallie site. At each CRP study site, an 11-electrode marine resistivity array was towed over seven north–south shore parallel transects (EA–EG and RA–RG, respectively), situated between 75–1000 meters offshore, and approximately 1.5 km in length. Each transect was mapped three times in an alternating north–south direction to account for data collected by the concurrently-operating radon mapping system (Everhart and others, 2018). Repeat streaming resistivity surveys were collected bimonthly along these same tracklines, between March and November 2017, to determine seasonal and temporal variability. Since resistivity is a function of both geology and salinity, it is assumed that temporal shifts will reflect salinity changes, as the underlying geology will be presumed to remain constant. ERT study areas consisted of land- and shallow water-based surveys, where [DC] electrical current was injected into the ground via two current electrodes and received by nine potential electrodes. Electrode positions for both sites were recorded along six transects (T01-T06) and are provided in this data release as supplemental information (please see the ERT location map files included in, ERT_survey_maps.zip).

Get Data and Metadata
Author(s) Arnell S Forde orcid, Christopher G Smith orcid, Nicholas Zaremba orcid, Elsie C. McBride orcid
Publication Date 2018-09-19
Beginning Date of Data 2017-09-25
Ending Date of Data 2017-11-07
Data Contact
DOI https://doi.org/10.5066/F7V40TFH
Citation Forde, A.S., Smith, C.G., Zaremba, N., and McBride, E.C., 2018, Continuous Resistivity Profiling, Electrical Resistivity Tomography and Hydrologic Data Collected in 2017 from Indian River Lagoon, Florida: U.S. Geological Survey data release, https://doi.org/10.5066/F7V40TFH.
Metadata Contact
Metadata Date 2020-10-13
Related Publication
Citations of these data No citations of these data are known at this time.
Access public
License http://www.usa.gov/publicdomain/label/1.0/
Loading...
Harvest Source: Coastal and Marine Geoscience Data System
Harvest Date: 2024-12-30T10:55:20.387Z