U.S. flag

An official website of the United States government

icon-dot-gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

icon-https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Predictive soil property map: Soil pH

These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive layer (resdept) and surface rock size and cover. Accuracy and error estimated using a 10-fold cross validation indicated a range of model performances with coefficient of variation (R2) for models ranging from 0.20 to 0.76 with mean of 0.52 and a standard deviation of 0.12. Models of pH, om and ec had the best accuracy (R2 > 0.6). Most texture fractions, CaCO3, and SAR models had R2 values from 0.5-0.6. Models of kwfact, dbovendry, resdept, rock models, gypsum and awc had R2 values from 0.4-0.5 excepting near surface models which tended to perform better. Very fine sands and 200 cm estimates for other models generally performed poorly (R2 from 0.2-0.4), and sample size for the 200 cm models was too low for reliable model building. More than 90% of the soils data used was sampled since 2000, but some older samples are included. Uncertainty estimates were also developed by creating relative prediction intervals, which allow end users to evaluate uncertainty easily.

Get Data and Metadata
Author(s) Travis W Nauman orcid, Michael C Duniway orcid
Publication Date 2020
Beginning Date of Data 2020
Ending Date of Data 2020
Data Contact
DOI https://doi.org/10.5066/P9SK0DO2
Citation Nauman, T.W., and Duniway, M.C., 2020, Predictive soil property map: Soil pH: U.S. Geological Survey data release, https://doi.org/10.5066/P9SK0DO2.
Metadata Contact
Metadata Date 2020-08-27
Related Publication
Citations of these data

Loading https://doi.org/10.1002/saj2.20080

Access public
License http://www.usa.gov/publicdomain/label/1.0/
Loading...
Harvest Source: ScienceBase
Harvest Date: 2021-11-19T04:42:53.907Z