U.S. flag

An official website of the United States government

icon-dot-gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

icon-https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Rare Earth Element Occurrences in the United States

Version 4.0 of this data release provides descriptions of more than 200 mineral districts, mines, and mineral occurrences (deposits, prospects, and showings) within the United States that are reported to contain substantial enrichments of the rare earth elements (REEs). These mineral occurrences include mined deposits, exploration prospects, and other occurrences with notable concentrations of the REEs. The inclusion of a particular mineral occurrence in this database is not meant to imply that it has economic potential. Rather, these occurrences were included to capture the distribution and characteristics of the known, reported REEs deposits in the United States, which are diverse in their geology and resource potential. Concentrated, mineable deposits of the REEs are rare, such that most of the sites within this data release are for unmined locations where the published information may not contain thorough descriptions (Van Gosen and others, 2014). Therefore, decisions had to be made by the authors regarding the addition or exclusion of specific REE occurrences in the dataset, based principally on the available descriptions of the REE concentrations and the apparent size of the mineralized body. The level of detail of this type of information varied widely amongst the occurrences, ranging from general descriptions to detailed sampling and analysis of some deposits. The entries and descriptions in the database were derived from published papers, reports, data, and internet documents representing a variety of sources, including geologic and exploration studies described in State, Federal, and industry reports. Although an attempt was made to capture as many examples as possible, this dataset is a progress report that is part of an ongoing effort. The authors welcome additional published information in order to continually update and refine this dataset. In addition to the conventional resources described in this report, every year approximately 56,000 metric tons of REEs are mined, beneficiated, and put into solution, but not recovered, by operations associated with the global phosphate fertilizer industry (Emsbo and others, 2015, 2016). As indicated by Emsbo and others (2015, 2016), recovery of byproduct REEs from the phosphate industry has the potential to substantially increase the supply of REEs to the market. The significant increases in applications and demands for REEs has led to an increased interest in identifying new sources that include extraction not only from mineral deposits, but also the potential for REE extraction from coal-based resources, and recycling of products containing REEs. The Department of Energy is currently (2019) evaluating technologies to recover REEs and other critical minerals from coal and coal-based resources (https://www.netl.doe.gov/coal/rare-earth-elements). Recycling efforts have focused on recovering REEs from light bulbs and electronics. The dataset provided in this data release is restricted to non-fuel, REE-bearing mineral deposits and does not include energy resources (such as coal). Van Gosen, B.S., Verplanck, P.L., Long, K.R., Gambogi, Joseph, and Seal, R.R., II, 2014, The rare-earth elements—Vital to modern technologies and lifestyles: U.S. Geological Survey Fact Sheet 2014–3078, 4 p., https://dx.doi.org/10.3133/fs20143078. Emsbo, Poul, McLaughlin, P.I., Breit, G.N., du Bray, E.A., and Koenig, A.E., 2015, Rare earth elements in sedimentary phosphate deposits—Solution to the global REE crisis?: Gondwana Research, v. 27, p. 776–785, accessed March 13, 2019, at https://doi.org/10.1016/j.gr.2014.10.008. Emsbo, Poul, McLaughlin, P.I., du Bray, E.A., Anderson, E.D., Vandenbroucke, T.R.A., and Zielinski, 2016, Rare earth elements in sedimentary phosphorite deposits—A global assessment, chap. 5 of Verplanck, P.L, and Hitzman, M.W., eds., Rare earth and critical elements in ore deposits: Reviews in Economic Geology, v. 18, p. 101–114, accessed March 13, 2019, at https://www.segweb.org/store/detail.aspx?id=EDOCREV18.

Get Data and Metadata
Author(s) Jesse D. Bellora orcid, Meredith H. Burger orcid, Bradley S Van orcid, Keith R. Long orcid, Thomas R. Carroll orcid, German Schmeda, Stuart A Giles orcid
Publication Date 2019-06-18
Beginning Date of Data 1889
Ending Date of Data 2018
Data Contact
DOI https://doi.org/10.5066/F7FN15D1
Citation Bellora, J.D., Burger, M.H., Van, B.S., Long, K.R., Carroll, T.R., Schmeda, G., and Giles, S.A., 2019, Rare Earth Element Occurrences in the United States: U.S. Geological Survey data release, https://doi.org/10.5066/F7FN15D1.
Metadata Contact
Metadata Date 2020-08-21
Related Publication
Citations of these data

Loading https://doi.org/10.3133/cir1454


Loading https://doi.org/10.3133/ofr20191023A


Loading https://doi.org/10.3133/OFR20191023B


Loading https://doi.org/10.3133/OFR20191023C

Access public
License http://www.usa.gov/publicdomain/label/1.0/
Loading...
Harvest Source: ScienceBase
Harvest Date: 2024-07-18T13:40:47.875Z